
An Object Oriented Multidimensional Data Model for
OLAP

Thanh Binh Nguyen, A Min Tjoa, and Roland Wagner

Institute of Software Technology (E188), Vienna University of Technology
Favoritenstrasse 9-11/188, A-1040 Vienna, Austria

{binh,tjoa}@ifs.tuwien.ac.at
Institute of Applied Knowledge Processing, University of Linz

Altenberger Strasse 69, A-4040 Linz, Austria
wagner@ifs.uni-linz.ac.at

Abstract. Online Analytical Processing (OLAP) data is frequently organized in
the form of multidimensional data cubes each of which is used to examine a set
of data values, called measures, associated with multiple dimensions and their
multiple levels. In this paper, we first propose a conceptual multidimensional
data model, which is able to represent and capture natural hierarchical
relationships among members within a dimension as well as the relationships
between dimension members and measure data values. Hereafter, dimensions
and data cubes with their operators are formally introduced. Afterward, we use
UML (Unified Modeling Language) to model the conceptual multidimensional
model in the context of object oriented databases.

1. Introduction

Data warehouses and OLAP are essential elements of decision support [5], they
enable business decision makers to creatively approach, analyze and understand
business problems [16]. While data warehouses are built to store very large amounts
of integrated data used to assist the decision-making process [9], the concept of
OLAP, which is first formulated in 1993 by [6] to enable business decision makers to
work with data warehouses, supports dynamic synthesis, analysis, and consolidation
of large volumes of multidimensional data [7]. OLAP systems organize data using the
multidimensional paradigm in the form of data cubes, each of which is a combination
of multiple dimensions with multiple levels per dimension. Summarized data is pre-
aggregated and stored with the main purpose to explore the relationship between
independent, static variables, dimensions, and dependent, dynamic variables,
measures [3]. Moreover, dimensions always have structures and are linguistic
categories that describe different ways of looking at the information [4]. These
dimensions contain one or more natural hierarchies, together with other attributes that
do not have a hierarchy’s relationship to any of the attributes in the dimensions [10].
Having and handling the predefined hierarchy or hierarchies within dimensions
provide the foundation of two typical operations like rolling up and drilling down.
Because unbalanced and multiple hierarchical structures (Fig. 1,2) are the common

structures of dimensions, the two current OLAP technologies, namely ROLAP and
MOLAP, have limitations in the handling of dimensions with these structures [15].

1999

Q1.1999

Jan.1999

W1.1999

all

W5.1999 W9.1999

Feb.1999 Mar.1999

1.Jan.1999 6.Jan.1999 1.Feb.1999 3.Feb.1999 3.Mar.1999

Fig. 1. An instance of the dimension Time with unbalanced and
multiple hierarchical structure

Year

Month

Week

Quater

Day

All

Fig. 2. A schema of the
dimension Time with
multihierarchical
structure.

ROLAP (Relational OLAP) products are set on top of existing relational database
management systems (RDBMS), which are well standardized and meet the needs of
storing large amounts of data. Dimensions and facts are mapped into relational tables,
called fact and dimension tables, organized as Star Schema and/or Snowflake Schema
[10]. Therefore in many cases, ROLAP products are not suitable for handling
dimensions with multihierarchical and unbalanced structures. Furthermore, existing
relational query languages (e.g. SQL) are not sufficiently powerful or flexible enough
to support true OLAP capabilities [19]. [3] clearly demonstrated the mismatch
between multidimensional operations and SQL.

Although MOLAP (Multidimensional OLAP) easily supports dimensions with
multiple and unbalanced hierarchical structures and MOLAP queries are very
powerful and flexible in terms of OLAP processing [14], there are still several
challenges for these products. First, the underlying data structures are limited in their
ability to support multiple subject areas and to provide access to detailed data.
Navigation and analysis of data is limited because the data is designed according to
previously determined requirements [7]. In addition, with products that require
complete pre-calculation, the dimensional explosion could result in physical database
that is unmanageable [14].

The first goal of this paper is the introduction of a conceptual multidimensional
data model that facilitates a precise rigorous conceptualization for OLAP. First, the
model is able to represent and capture natural hierarchical relationships among
members within a dimension. Therefore, dimensions with complex structures, such
as: unbalanced and multihierarchical structures, can be handled. Moreover, the data
model is able to represent the relationships between dimension members and measure
data values by mean of cube cells. Hereafter, the data cubes, which are basic
components in multidimensional data analysis, are formally introduced. Furthermore,
cube operators (e.g. jumping, rollingUp and drillingDown) are defined in a very
elegant manner.

The second goal is the modeling of the conceptual multidimensional data model in
term of classes by using UML. Based on the formal representation of the class
specifications in UML, the design and implementation of the data model for object
oriented databases are straightforward.

The remainder of this paper is organized as follows. In section 2, we discuss about
related works. Then in section 3, we introduce a conceptual data model that will be
mapped into object-oriented database by means of UML in section 4. The paper
concludes with section 5, which presents our current and future works.

2. Related works

Since Codd’s [6] formulated the term Online Analytical Processing (OLAP) in 1993,
many commercial products, like Arborsoft (now Hyperion) Essbase, Cognos
Powerplay or MicroStrategy’s DSS Agent have been introduced on the market [2].
But unfortunately, sound concepts were not available at the time of the commercial
products being developed. The scientific community struggles hard to deliver a
common basis for multidimensional data models ([1], [4], [8], [11], [12], [13], [21]).
The data models presented so far differ in expressive power, complexity and
formalism. In the followings, some research works in the field of data warehousing
systems and OLAP tools are summarized.

In [12] a multidimensional data model is introduced based on relational elements.
Dimensions are modeled as “dimension relations”, practically annotating attributes
with dimension names. The cubes are modeled as functions from the Cartesian
product of the dimensions to the measure and are mapped to “grouping relations”
through an applicability definition.

In [8] n-dimensional tables are defined and a relational mapping is provided
through the notation of completion. Multidimensional database are considered to be
composed from set of tables forming denormalized star schemata. Attribute
hierarchies are modeled through the introduction of functional dependencies in the
attributes of dimension tables.

[4] modeled a multidimensional database through the notations of dimensions and
f-tables. Dimensions are constructed from hierarchies of dimension levels, whereas f-
tables are repositories for the factual data. Data are characterized from a set of roll-up
functions, mapping the instance of a dimension level to instances of other dimension
level.

In statistical databases, [17] presented a comparison of work done in statistical and
multidimensional databases. The comparison was made with respect to application
areas, conceptual modeling, data structure representation, operations, physical
organization aspects and privacy issues.

In [3], a framework for Object-Oriented OLAP is introduced. Two major physical
implementations exist today: ROLAP and MOLAP and their advantages and
disadvantages due to physical implementation were introduced. The paper also
presented another physical implementation called O3LAP model.

[20] took the concepts and basic ideas of the classical multidimensional model
based on the Object-Oriented paradigm. The basic elements of their Object Oriented

Multidimensional Model are dimension classes and fact classes. They also presented
cube classes as the basic structure to allow a subsequent analysis of the data stored in
the system.

In this paper, we address a suitable mutidimensional data model for OLAP. The
main contributions are: (a) the introduction of a formal multidimensional data model;
(b) the very elegant manners of definitions of three cube operators, namely jumping,
rollingUp and drillingDown; (c) the modeling of the conceptual multidimensional
data model in term of classes by using UML.

3. A Conceptual Data Model

In our approach, a multidimensional data model is constructed based on a set of
dimensions { } N∈= xx ,D,..,D1D , a set of measures { } N∈= yy ,M,..,M1M and a

set of data cubes { } N∈= zz ,C,..,C1C . The following sections formally introduce the
descriptions of dimensions with their structures, measures and data cubes.

3.1. The Concepts of Dimensions

First, we introduce hierarchical relationships among dimension members by means of
one hierarchical domain per dimension. A hierarchical domain is a set of dimension
members, organized in hierarchy of levels, corresponding to different levels of
granularity. It allows us to consider a dimension schema as a partially ordered set of
levels. In this concept, a hierarchy is a path along the dimension schema, beginning at
the root level and ending at a leaf level. Moreover, the recursive definitions of two
dimension operators, namely ancestor and descendant, provide abilities to navigate
along a dimension structure. In a consequence, dimensions with any complexity in
their structures can be captured with this data model.

Definition 3.1.1. [Dimension Hierarchical Domain] A hierarchical domain of a
dimension D is a non-empty set and denoted by { }ndmdmalldom ,..,}{)D(1∪= ,
where:
• Each dimension member idm is a data item within a dimension. E.g. 1999,

Q1.1999, Jan.1999, and 1.Jan.1999, etc are dimension members within the
dimension Time (Fig. 1).

• Such that the graph),(EVG
M

=
�

, defined as the representation over the binary

relation over the)D(dom , is a tree and defined as follows:
)D(domV = ,

)D()D(domdomE ×⊂ . jMiji dmdmEdmdm �:),(∈∀ is an edge in
M

G
�

. The
edge is given when there is an ordered relationship in the sense of hierarchy.

• And the two operators {+,-}: :)D(domdmi ∈∀
=−)(idm }:)D({ iMjj dmdmdomdm �∈

=+)(idm }:)D({ kMik dmdmdomdm �∈
• The all or root member:):)D())(D(!(alldmdomdmdomall M�∈¬∃∈∃ .
• Leaf members:):),D())(D((jMiji dmdmjidomdmdomdm �≠∈¬∃∈∀ .
Example: Figure 1 shows a representation in tree term of the dimension Time.
Hereafter, we have:

dom(Time)={all,1999,Q1.1999,..,3.Mar.1999},
all M� 1999,1999 M� Q1.1999,...,Mar.1999 M� 3.Mar.1999,
-(1999)=all; +(1999)={Q1.1999,W1.1999,W5.1999,W9.1999}

Definition 3.1.2. [Dimension Levels] Let { } N∈∪= hllAllLevels h ,,..,)D(1 be a finite
set of levels of a dimension D, where:
• The collection of subsets { })(),..,(1 hldomldom is a partition of dom(D),
• The All or root level: }{)(:)D(! allAlldomLevelsAll =∈∃ ,

• Leaf levels: } a :)()D({ leafmemberdmldomdmLevelsl jiji ∈∀∈ .

Example: The dimension Time has three levels Levels(Time)={All,Year,Quarter,
Month,Week,Day}. And:

dom(All)= {all}, dom(Year)={1999}, dom(Quarter)= {Q1.1999}
dom(Month)= {Jan.1999,Feb.1999,Mar.1999},
dom(Week)={W1.1999,W5.1999,W9.1999},
dom(Day)= {1.Jan.1999,6.Jan.1999,1.Feb.1999,3.Feb.1999,3.Mar.1999}

Definition 3.1.3. [Dimension Schema] A schema of a dimension D, denoted by
DSchema(D)= L,Levels �)D(, is a partially ordered set of levels:
• Levels(D) is a finite set of dimension levels,
• And L� is an ordered relation over the levels and satisfies the following

condition:
jLi ll � if :))(())((juit ldomdmandldomdm ∈∃∈∃ uMt dmdm � .

Category

Type

Item

Product

Country

State

City

Year

Quarter

Month

Day

Week

Geography Time

All All All

Fig. 3. Schemas of three dimensions Product, Geography and Time

Example: Figure 3 is used to describe schemas of three dimensions Product,
Geography, and Time.
DSchema(Product)={All L� Category, Category L� Type, Type L� Item}

DSchema(Geography)={All L� Country, Country L� State, State L� City}
DSchema(Time)={All L� Year ,Year L� Quarter, Quarter L� Month, Month L� Day ,
 All L� Year, Year L� Week, Week L� Day}
Definition 3.1.4. [Dimension Path] A path within a dimension schema is a linear,
totally ordered list of levels and can be defined as follows:

)D(, Levelsll ji ∈∀ :

{ }
�
�

�

�
�

�

�

=

φ

jLutLi

jLi

ji llll

ll

llpath ��

�

,..,

}{

),(

If jLi ll �

Else if jLutLiut llllLevelsll �� ,..,:)D(,.., ∈∃

Else

Definition 3.1.5. [Dimension Hierarchy] A hierarchy is defined by a),(leaflAllpath
within the schema of a dimension D. The path begins at All (root) level and ends at a
leaf level.

Let N∈= mhhH m},,..,{)D(1 be a set of hierarchies of a dimension D. If m=1 then
the dimension has single hierarchical structure, else the dimension has
multihierarchical structure.

Definition 3.1.6. [Dimension Operators] Two dimension operators (DO), namely
ancestor and descendant, are defined recursively as follows:

)D(,, Levelslll dai ∈∀ and :)D()(domldomdm i ⊂∈∀

�
�
�

�

�
�
�

�

�

=

−∈∈
=

−

−

−−

iLpp

a

a
a

llldmancestordm

ldmancestor

dmdmldomdm

undefined

ldmancestor

�:)D,,(

: where),D,,(

)(:)(
)D,,(

If)),((φ=ia llpath

Else If)(iLa ll �

 Else

�
�
�

�

�
�
�

�

�

∈

+∈∈
=

+

+

++

nLin

d

d
d

llldmtdescentdandm

ldmdescendant

dmdmldomdm

undefined

ldmdescendant

�:)D,,(

:where),D,,(

)}(:)({
)D,,(

If)),((φ=di llpath

Else If)(dLi ll �

Else

Example: ancestor(Q1.1999,Year,Time)=1999,
descendant(Q1.1999,Month,Time)= {Jan.1999,Feb.1999,Mar.1999},

3.2. The Concepts of Measures

In this section we introduce measures, which are the objects of analysis in the context
of multidimensional data model.

Definition 3.2.1. [Measure Schema] A schema of a measure M is a tuple
O,)M(FnameMSchema = , where:

• Fname is a name of a corresponding fact,
• COMPOSITE}{NONE,O ∪Ω∈ is an operation type applied to a specific fact [2]:

− Ω={SUM, COUNT, MAX, MIN} is a set of aggregation functions,
− COMPOSITE is an operation (e.g. average), where measures cannot be

utilized in order to automatically derive higher aggregations,
− NONE measures are not aggregated. In this case, the measure is the fact.

Definition 3.2.2. [Measure Domain] Let N be a numerical domain where a measure
value is defined (e.g. N, Z, R). The domain of a measure M is a subset of N. We
denote by N⊂)M(dom .

3.3. The Concepts of Data Cubes

A multidimensional cube is constructed based on a set dimensions and a set of
measures, and consists a collection of cells. Each cell is an intersection among a set of
dimension members and measure data values. Furthermore, cells are grouped into
granular groupbys, each of which expresses a mapping from the domains of x-tuple of
dimension levels (independent variables) to y-numerical domains of y-tuple of
numeric measures (dependent variables).

10

50

20

12

15

10

Alcoholic
Dairy

Beverage
Baked Food

Meat
Seafood

Mexico
USA

Pr
od

uc
t

1 2 3 4 5 6
Time

Geo
grap

hy

Fig. 4. Sale cube includes dimensions: Geography, Product and Time and a fact: Sale amount.

Given x dimensions N∈xx ,D,..,D1 , and y measures N∈yy ,M,..,M1 .

Definition 3.3.1. [Cube Schema] A cube schema is tuple
CSchema(C)= MSchemasDSchemasCname ,, :
• Cname is the name of a cube,
• DSchemas are the schemas of x dimensions, denoted by

,)D(),..,D(1 >=< xDSchemaDSchemaDSchemas
• MSchemas are the schemas of y measures, denoted by

>=<)M(),..,M(1 yMSchemaMSchemaMSchemas .

Definition 3.3.2. [Cube Domain] Given a function:
},{)M(..)M()D(..)D(: 11 falsetruedomdomdomdomf yx →××××× ,

A cube domain, denoted by { } N∈= kccdom k ,,..,)C(1 is determined as follows:
)C(dom =),D(..)D(),({ 1 xdomdomdmsfmsdmsc ××∈=

}),(:)M(..)M(1 truefmsdmsfdomdomfms y =××∈

3.4. Operating Group by, Rolling Up, Drilling Down in our model

Let a cube C be constituted from x dimensions N∈xx ,D,..,D1 , and y measures
N∈yy ,M,..,M1 . We define groupby and three operators, namely jumping,

rollingUp and drillingDown as follows:

Definition 3.4.1. [Groupby] A groupby is triple G=)G(),G(, domGSchemaGname
where:
• Gname is the name of this groupby,
• GSchema(G)=)G(),G(GMSchemasGLevels :

)D(..)D(,..,)G(1DD1 xLevelsLevelsllGLevels
x

××>∈=< is a x-tuple of levels of

the x dimensions N∈xx ,D,..,D1 .
>=<)M(),..,M()G(1 yMSchemaMSchemaGMSchemas is a y-tuple of measure

schemas of the y measures N∈yy ,M,..,M1 .

•),(..)(|)C(,{)G(DD1 x
ldomldomdmsdomfmsdmscdom ××∈>∈=<=

)}M(..)M(1 ydomdomfms ××∈

Let hi be a number of levels of each dimension Di (1≤i≤x). The total set of

groupbys over a cube C is defined as ∏
=

==
x

i
ip hpGroupbys

1
1 },G,..,G{)C([18].

Definition 3.4.2. [Cube Operators] The three basic navigational cube operators (CO),
namely jumping, rollingUp and drillingDown, which are applied to navigate along a
data cube C, corresponding to a dimension Di, are defined as follows:

Given a current groupby cG , associated with a level cl of a dimension iD , and
three other levels)D(,, idrj Levelslll ∈ .

• Jumping:
>=<=)G(),G(G)D,,G(jjjijc GMSchemasGLevelsljumping

 Where:
),G()G(cj GMSchemasGMSchemas =

,))(G(jj liGLevels = .),)(G())(G(ikkGLevelskGLevels cj ≠∀=

• Rolling Up:)(cldomdm ∈∀ ,)D,,G(G ircr ljumping= :

>=<=)G(),G(G)D,,,G(sub
r

sub
r

sub
rirc domGSchemaldmrollingUp

 Where:
)G()(G r

sub
r GSchemaGSchema = ,

:)G(|)G({)G(crr
sub
r domcdomcdom ∈∃∈= ,)(. dmidmsc =

)D,,()(. irr ldmancestoridmsc = , }),(.)(. ijjdmscjdmscr ≠∀=
• Drilling Down:)(cldomdm ∈∀ ,)D,,G(G idcd ljumping= :

>=<=)G(),G(G)D,,,G(sub
d

sub
d

sub
didc domGSchemaldmwndrillingDo

 Where:
),G()(G d

sub
d GSchemaGSchema =

:)G(|)G({)G(cdd
sub
d domcdomcdom ∈∃∈= ,)(. dmidmsc =

),D,,()(. idd ldmdescendantidmsc ∈ }),(.)(. ijjdmscjdmscd ≠∀=

4. Modeling Multidimensional Data Model

In this section, UML is used to model dimensions, measures and data cubes in context
of an object oriented data model. All conceptual components, which are introduced in
section 3, are mapped as classes. Figure 5 illustrates the modeling for our data model
in term of class diagrams by using UML.

4.1. The Modeling of Dimensions

The dimension concepts, such as: dimension members, levels, dimension schemas,
hierarchy and dimension, are modeled in term of class diagrams by using UML. First,
a hierarchical domain of dimension members within a dimension is handled by means
of the DMember class. The two dimension member operators {+} and {-} are mapped
into the two methods getFathers and getChildren, built-in every instance of this class.
Hereafter, The Level, DSchema, Hierarchy classes are defined to describe the
concepts of level, dimension schema and dimension hierarchy. Afterwards, each
instance of the Dimension class describes a dimension. The dimension operators,
namely ancestor and descendant are mapped as two methods with the same names.

4.1.1. DMember. Each instance of this class describes a dimension member within a
hierarchical domain of a dimension.
• Attributes:

description (String) - That is a data item within a dimension.
• Relationships:

fathers (Set<DMember>) - A set of referred DMember objects.
children (Set<DMember>) - A set of referred DMember objects

• Main methods:
getFathers() (return Set<DMember>) - This method describes the operator {-}.
getChildren() (returns Set<DMember>) - This method describes the operator {+}.

IntergerV alue
value : int;

s etValue(new V : int) : void;
getValue() : int;

floa tValue
value : float;

s etValue(newV : float) : void;
getValue() : float;

MeasureValue
value : type;

s etValue(newV : Type) : void;
getValue() : Type;

Hierarchy
Hnam e : String;

Hierarchy() : void;
s etHnam e(hnam e : String) : void;
ins ertLevel(pos ition : int, l : Level) : boolean;
rem oveLevel(lnam e : String) : boolean;
getLevel(lnam e : String) : Level;
getPreLevel(lnam e : String) : Level;
getAfterLevel(lnam e : String) : Level;
getLevels () : s et of Level;

DMember
Des cription : String;

s etDes cription(des cM : String) : void;
getDes cription() : s tring;
addChild(aCM : D Mem ber) : boolean;
rem oveChild(rCM : DMem ber) : boolean;
getChildren() : s et of DMem ber;
addFather(aFM : DMem ber) : boolean;
rem oveFather(rFM : D Mem ber) : boolean;
getFathers () : s et of D Mem ber;

0.. *+Child 0.. *

Has Child

+Father

0..*

+Father

0..*

Has Father +Child

Dimension

s etDSchem a(new D S : DSchem a) : void ;
getDSchem a() : DSc hema ;
addHierarchy(new H : Hierarchy) : boolean;
rem oveHierarchy(hname : String) : boolean;
getHierarc hy(hname : St ring) : H ier arc hy;
getHierarc hies () : s e t of Hierar chy;
addLevel(l : L evel) : bool ean;
rem oveLevel(l nam e : Str ing) : bool ean;
getLevel (l nam e : Str ing) : Level;
getLevel s () : s et o f Level ;
ances tor(cD M : DMemb er, l nam e : Str ing) : DMem ber;
des ce ndant(cDM : DMem be r, lnam e : Strin g) : s et o f DMe m ber ;

1..*1..*

contains

MS chem a
Fnam e : String;
AggFunction : String;

Cell

addDMem ber(newDM : DMem ber) : boolean;
rem oveD Mem ber(index : int) : boolean;
getDMem ber(index : int) : DMem ber;
getDMem bers () : s et of D Mem ber;
addMValue(newMV : Meas ureValue) : boolean;
rem oveMValue(index : int) : boolean;
getMValue(index : int) : Meas ureValue;
getMValues () : s et of Meas ureValue;

1..*1..*
refers to

1..*1..*
contains

Cube
Bas icGr oupby : Gr oupby;

s e tC Schem a(new CS : C ub eSchem a) : void;
ge tC Schem a() : C ubeSch ema;
ad dGroupby(ne wG : Gro upby) : boolean;
r em oveGro upby(gnam e : Str in g) : boolean;
ge tGroupby(gnam e : Strin g) : Grou pby;
ge tGroupbyNam es () : s et o f Strin g;
ad dDim ens ion(n ewD : Dimen s ion) : boolean;
r em oveDim(dnam e : Str ing) : boolean;
ge tD im(dnam e : Str ing) : D im ens ion;
ge tD imens ions () : s e t of Dimens ion;
jum pin g(l nam e : Str ing, dnam e : Str ing) : void;
r ol li ngUp(c D M : DMem ber, lna me : Stri ng, dna me : St ring) : voi d;
dri ll in gDo wn (cDM : D Membe r, lnam e : Str in g, dnam e : Strin g) : vo id;

1..*1..*

refers to

Level
Lnam e : Str ing;

s etLnam e(lnam e : Strin g) : void;
getLnam e() : String;
addD M(m : DMem ber) : b oolean;
rem oveDM(m : DMem ber) : boolean;
getDM(des cM : String) : D Mem ber;
getDMs () : s et of DMem ber;

1.. *1.. *

refers to

1 .. *1 .. *

contains

1..*1..*

c onta ins

MSchemas

addMSchem a(m s : MSche m a) : boolean;
rem oveMSc hem a(m s : MSchem a) : bool ean;
rem oveMSc hem a(index : int) : boolean;
getMSchem a(index : i nt) : MSchem a;

1.. *1.. *

contains

Groupby

s etGSchem a(gs chem a : GSchem a) : void;
getGSchem a() : GSchem a;
addC ell(c : Cell) : boolean;
rem oveCell(c : Cell) : boolean;
getCell(D nam e : String, dm : D Mem ber) : cell;

1..*1..*

c ontains

1..*1..*

refers to

GSc hema
Gnam e : Stri ng;

ge tGnam e() : Stri ng;
s e tGnam e(n ew Gn ame : St ring) : voi d;
up date MSc hema s (newMSs : MSchem as) : boole an;
ad dLevels (aLevel : Level)
rem oveLevel(i ndex i nt) : Level;

1..*1..*

refers to

refers to

contains

CSchema
C name : St ri ng;

getCn ame() : Stri ng;
s etCn ame(newName : St ring) : voi d;
updateMSchem as (newMS : MSche m as) : void;
updateDSchem as (newDM : DSchem as) : void;

c onta ins

c onta ins

DSchema
Dnam e : String;

addLevel(addlevel : Level) : boolean;
rem oveLevel(lnam e : String) : boolean;
getLevel(lnam e : String) : Level;

contains

1..*1..* refers to

1..*

contains

1..*

Fig.5. The modeling of the object oriented multidimensional data model

4.1.2. Level. Each instance of the Level class describes a level of a dimension.
Attributes:

dmembers (Set<DMember>) - A set of contained DMember objects.

4.1.3. DSchema. Each instance of the DSchema describes a dimension schema.
• Attributes:

dname (String) - That is a dimension name.
• Relationships:

levels (Set<Level>) - A set of Level objects.

4.1.4. Hierarchy. Each instance of the Hierarchy class describes a hierarchy of levels
within a dimension.
• Attributes:

dname (String) - That is a hierarchy name
• Relationships:

levels (Set<Level>) - A set of Level objects

4.1.5. Dimension. Each instance of this class describes a dimension.
• Attributes:

dschema (DSchema) - A DSchema object.
hierarchies (Set<Hierarchy>) - A set of Hierarchy objects.
levels (Set<Level>) - A set of Level objects.

• Main methods:
ancestor(DMember cDM;lname:String) (returns DMember): ancestor operator.
descendant(DMember cDM,lname:String) (Set<DMember>): descendant operator.

4.2. The Modeling of Measures

Measure schemas and measure data values are mapped into classes. First, an
MSchema describes a measure schema. Afterwards, The MValue is an abstract type
that serves as a common super type for measure values. It is obvious that the two
classes, namely intMValue and floatValue, are subclasses of MValue.

4.2.1. MSchema. Each instance of this class describes a measure schema.
• Attributes:

fname (String) - That is a fact name.
aggFunction (String)- An aggregation function, such as Max, Min, Sum, Count,

None and Composite.

4.2.2. MValue. MValue is an abstract type that serves as common super type for
measure values.
Attributes:

value (Type) – That describes a measure value.

4.2.3. intMValue. The intMValue is a subclass of MValue. Each instance of this class
describes an integer measure value.
• Specializes:

MValue: The intMValue class inherits from MValue class

• Attributes:
value (int) – The value is overridden as integer.

4.2.4. floatMValue. The floatMValue is a subclass of MValue. Each instance of this
class describes a float measure value.
• Specializes:

MValue: The floatMValue class inherits from MValue class
• Attributes:

value (float) – The value is overridden as float.

4.3. The Modeling of Multidimensional Components

First, each instance of the CSchema, which contains an x-tuple of DSchemas and a y-
tuple of MSchemas, describes a cube schema. Then, a Cell refers to x DMembers of x
dimensions and y MValues of y measures. In addition, a GSchema contains x Levels of
x dimensions and the y-tuple MSchemas. Afterwards, a Groupby contains a GSchema
and a subset of Cells. As a consequence, a Cube contains a CSchema and a
BasicGroupby (Groupby), is associated with a set of Dimensions, and a set of
Groupbys. The three methods, i.e. jumping, rollingUp and drillingDown, are the
mappings of the three operators with the same names.

4.3.1. CSchema. Each instance of the CSchema describes a cube schema.
• Attributes:

dschemas (Set<DSchema>) - A set of x DSchema objects,
mschemas (Set<MSchema>) - A set of y MSchema objects.

4.3.2. Cell. Each instance of this class describes a cube cell.
• Relationships:

dmembers (Set<DMember>) - A set of x DMember objects.
mvalues (Set<MValue>) - A set of y MValue objects.

4.3.3. GSchema. Each instance of the GSchema class describes a groupby schema.
• Relationships:

levels (Set<Level>) - A set of x Level objects.
mschemas (Set<MSchema>) - A set of y MSchema objects.

4.3.4. Groupby. Each instance of this class describes a groupby.
• Attributes:

gschema (GSchema): A GSchema object that describes a groupby schema.
cells (Set<Cell>): A set of Cell objects.

4.3.5. Cube. Each instance of the Cube class describes a data cube.
• Attributes:

cschema (CSchema) – A CSchema describes a cube schema of a cube.
basicgroupby (Groupby) - A Groupby object.

• Relationships:
dimensions (Set<Dimension>) - Dimensions express for x dimensions of a cube.
groupbies (Set<Groupby>) – A set of Groupby objects,

• Main methods:
jumping(lname:String;dname:String) (void) - jumping operator.
rollingUp(cDM:DMember;lname:String;dname:String) (void) - rollingUp operator.
drillingDown(cDM:DMember;lname:String;dname:String) (void) - drillingDown

operator.

5. Conclusion and future works

In this paper, we have introduced the conceptual multidimensional data model, which
facilitates even sophisticated constructs based on multidimensional data units or
members such as dimension members, measure data values and then cells. The model
is able to represent and capture natural hierarchical relationships among dimension
members. Dimensions with complexity of their structures, such as: unbalanced and
multihierarchical structures, can be modeled in an elegant and consistent way.
Moreover, the data model represents the relationships between dimension members
and measure data values by mean of cube cells. In consequence, data cubes, which are
basic components in multidimensional data analysis, and their operators are formally
introduced in a very elegant manner. We have also proposed a modeling of the
conceptual multidimensional data model in term of classes by means of UML, which
is an object oriented standard analysis and design notation.

In context of future works, we are investigating two approaches for
implementation: pure object-oriented orientation and object-relational approach. With
the first model, dimensions and cube are mapped into an object-oriented database in
term of classes. In the other alternative, dimensions, measure schema, and cube
schema are grouped into a term of metadata, which will be mapped into object-
oriented database in term of classes. Some useful methods built in those classes are
used to give the required Ids within those dimensions. The given Ids will be joined to
the fact table, which is implemented in relational database.

Acknowledgment

This work is partly supported by the EU-4th Framework Project GOAL (Geographic
Information Online Analysis)-EU Project #977071 and by the ASEAN European
Union Academic Network (ASEA-Uninet), Project EZA 894/98.

References

1. Agrawal, R., Gupta, A., Sarawagi, A.: Modeling Multidimensional Databases. IBM
Research Report, IBM Almaden Research Center, September 1995.

2. Albrecht, J., Guenzel, H., Lehner, W.: Set-Derivability of Multidimensiona Aggregates.
First International Conference on Data Warehousing and Knowledge Discovery. DaWaK'99,
Florence, Italy, August 30 - September 1.

3. Buzydlowski, J. W., Song, II-Y., Hassell, L.: A Framework for Object-Oriented On-Line
Analytic Processing. DOLAP 1998

4. Cabibbo, L., Torlone, R.: A Logical Approach to Multidimensional Databases. EDBT 1998
5. Chaudhuri, S., Dayal, U.: An Overview of Data Warehousing and OLAP Technology.

SIGMOD Record Volume 26, Number 1, September 1997.
6. Codd, E. F., Codd, S.B., Salley, C. T.: Providing OLAP (On-Line Analytical Processing) to

user-analysts: An IT mandate. Technical report, 1993.
7. Connolly, T., Begg, C.: Database system: a practical approach to design, implementation,

and management. Addison-Wesley Longman, Inc., 1999.
8. Gyssens, M., Lakshmanan, L.V.S.: A foundation for multi-dimensional databases, Proc.

VLDB'97.
9. Hurtado, C., Mendelzon, A., Vaisman, A.: Maintaining Data Cubes under Dimension

Updates. Proc IEEE/ICDE '99.
10.Kimball, R.: The Data Warehouse Lifecycle Toolkit. John Wiley & Sons, Inc., 1998.
11.Lehner, W.: Modeling Large Scale OLAP Scenarios. 6th International Conference on

Extending Database Technology (EDBT'98), Valencia, Spain, 23-27, March 1998.
12.Li, C., Wang, X.S.: A Data Model for Supporting On-Line Analytical Processing. CIKM

1996.
13.Mangisengi, O., Tjoa, A M., Wagner, R.R.: Multidimensional Modelling Approaches for

OLAP. Proceedings of the Ninth International Database Conference “Heterogeneous and
Internet Databases” 1999, ISBN 962-937-046-8. Ed. J. Fong, Hong Kong, 1999

14.McGuff, F., Kador, J.: Developing Analytical Database Applications. Prentice Hall PTR,
1999.

15.Nguyen, T.B., Tjoa, A M., Wagner, R.R.: Conceptual Object Oriented Multidimensional
Data Model for OLAP. Technical Report, IFS, Vienna 1999.

16.Samtani, S., Mohania, M.K., Kumar, V., Kambayashi, Y.: Recent Advances and Research
Problems in Data Warehousing. ER Workshops 1998.

17.Shoshani, A.: OLAP and Statistical Databases: Similarities and Differences. Tutorials of
PODS 1997.

18.Shukla A., Deshpande, P., Naughton, J. F., Ramasamy, K.: Storage Estimation for
Multidimensional Aggregates in the Presence of Hierarchies. VLDB 1996: 522-531

19.Thomsen, E.: OLAP solutions: Building Multidimensional Information Systems. John
Wiley& Sons, Inc., 1997.

20.Trujillo, J., Palomar, M.: An Object Oriented Approach to Multidimensional Database.
Conceptual Modeling (OOMD), DOLAP 1998.

21.Vassiliadis, P.: Modeling Multidimensional Databases, Cubes and Cube operations. In Proc.
10th Scientific and Statistical Database Management Conference (SSDBM '98), Capri, Italy,
June 1998.

22.Wang, M., Iyer, B.: Efficient roll-up and drill-down analysis in relational database. In 1997
SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, 1997.

