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Abstract. Online Analytical Processing (OLAP) data is frequently organized in 
the form of multidimensional data cubes each of which is used to examine a set 
of data values, called measures, associated with multiple dimensions and their 
multiple levels. In this paper, we first propose a conceptual multidimensional 
data model, which is able to represent and capture natural hierarchical 
relationships among members within a dimension as well as the relationships 
between dimension members and measure data values. Hereafter, dimensions 
and data cubes with their operators are formally introduced. Afterward, we use 
UML (Unified Modeling Language) to model the conceptual multidimensional 
model in the context of object oriented databases.  

1. Introduction 

Data warehouses and OLAP are essential elements of decision support [5], they 
enable business decision makers to creatively approach, analyze and understand 
business problems [16]. While data warehouses are built to store very large amounts 
of integrated data used to assist the decision-making process [9], the concept of 
OLAP, which is first formulated in 1993 by [6] to enable business decision makers to 
work with data warehouses, supports dynamic synthesis, analysis, and consolidation 
of large volumes of multidimensional data [7]. OLAP systems organize data using the 
multidimensional paradigm in the form of data cubes, each of which is a combination 
of multiple dimensions with multiple levels per dimension. Summarized data is pre-
aggregated and stored with the main purpose to explore the relationship between 
independent, static variables, dimensions, and dependent, dynamic variables, 
measures [3]. Moreover, dimensions always have structures and are linguistic 
categories that describe different ways of looking at the information [4]. These 
dimensions contain one or more natural hierarchies, together with other attributes that 
do not have a hierarchy’s relationship to any of the attributes in the dimensions [10]. 
Having and handling the predefined hierarchy or hierarchies within dimensions 
provide the foundation of two typical operations like rolling up and drilling down. 
Because unbalanced and multiple hierarchical structures (Fig. 1,2) are the common 



structures of dimensions, the two current OLAP technologies, namely ROLAP and 
MOLAP, have limitations in the handling of dimensions with these structures [15].  
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Fig. 1. An instance of the dimension Time with unbalanced and 
multiple hierarchical structure 
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Fig. 2. A schema of the 
dimension Time with 
multihierarchical 
structure. 

ROLAP (Relational OLAP) products are set on top of existing relational database 
management systems (RDBMS), which are well standardized and meet the needs of 
storing large amounts of data. Dimensions and facts are mapped into relational tables, 
called fact and dimension tables, organized as Star Schema and/or Snowflake Schema 
[10]. Therefore in many cases, ROLAP products are not suitable for handling 
dimensions with multihierarchical and unbalanced structures. Furthermore, existing 
relational query languages (e.g. SQL) are not sufficiently powerful or flexible enough 
to support true OLAP capabilities [19]. [3] clearly demonstrated the mismatch 
between multidimensional operations and SQL.  

Although MOLAP (Multidimensional OLAP) easily supports dimensions with 
multiple and unbalanced hierarchical structures and MOLAP queries are very 
powerful and flexible in terms of OLAP processing [14], there are still several 
challenges for these products. First, the underlying data structures are limited in their 
ability to support multiple subject areas and to provide access to detailed data. 
Navigation and analysis of data is limited because the data is designed according to 
previously determined requirements [7]. In addition, with products that require 
complete pre-calculation, the dimensional explosion could result in physical database 
that is unmanageable [14]. 

The first goal of this paper is the introduction of a conceptual multidimensional 
data model that facilitates a precise rigorous conceptualization for OLAP. First, the 
model is able to represent and capture natural hierarchical relationships among 
members within a dimension. Therefore, dimensions with complex structures, such 
as: unbalanced and multihierarchical structures, can be handled. Moreover, the data 
model is able to represent the relationships between dimension members and measure 
data values by mean of cube cells. Hereafter, the data cubes, which are basic 
components in multidimensional data analysis, are formally introduced. Furthermore, 
cube operators (e.g. jumping, rollingUp and drillingDown) are defined in a very 
elegant manner. 



The second goal is the modeling of the conceptual multidimensional data model in 
term of classes by using UML. Based on the formal representation of the class 
specifications in UML, the design and implementation of the data model for object 
oriented databases are straightforward.  

The remainder of this paper is organized as follows. In section 2, we discuss about 
related works. Then in section 3, we introduce a conceptual data model that will be 
mapped into object-oriented database by means of UML in section 4. The paper 
concludes with section 5, which presents our current and future works. 

2. Related works 

Since Codd’s [6] formulated the term Online Analytical Processing (OLAP) in 1993, 
many commercial products, like Arborsoft (now Hyperion) Essbase, Cognos 
Powerplay or MicroStrategy’s DSS Agent have been introduced on the market [2]. 
But unfortunately, sound concepts were not available at the time of the commercial 
products being developed. The scientific community struggles hard to deliver a 
common basis for multidimensional data models ([1], [4], [8], [11], [12], [13], [21]). 
The data models presented so far differ in expressive power, complexity and 
formalism.  In the followings, some research works in the field of data warehousing 
systems and OLAP tools are summarized.  

In [12] a multidimensional data model is introduced based on relational elements. 
Dimensions are modeled as “dimension relations”, practically annotating attributes 
with dimension names. The cubes are modeled as functions from the Cartesian 
product of the dimensions to the measure and are mapped to “grouping relations” 
through an applicability definition.  

In [8] n-dimensional tables are defined and a relational mapping is provided 
through the notation of completion. Multidimensional database are considered to be 
composed from set of tables forming denormalized star schemata. Attribute 
hierarchies are modeled through the introduction of functional dependencies in the 
attributes of dimension tables.  

[4] modeled a multidimensional database through the notations of dimensions and 
f-tables. Dimensions are constructed from hierarchies of dimension levels, whereas f-
tables are repositories for the factual data. Data are characterized from a set of roll-up 
functions, mapping the instance of a dimension level to instances of other dimension 
level.  

In statistical databases, [17] presented a comparison of work done in statistical and 
multidimensional databases. The comparison was made with respect to application 
areas, conceptual modeling, data structure representation, operations, physical 
organization aspects and privacy issues. 

In [3], a framework for Object-Oriented OLAP is introduced. Two major physical 
implementations exist today: ROLAP and MOLAP and their advantages and 
disadvantages due to physical implementation were introduced. The paper also 
presented another physical implementation called O3LAP model.  

[20] took the concepts and basic ideas of the classical multidimensional model 
based on the Object-Oriented paradigm. The basic elements of their Object Oriented 



Multidimensional Model are dimension classes and fact classes. They also presented 
cube classes as the basic structure to allow a subsequent analysis of the data stored in 
the system.  

In this paper, we address a suitable mutidimensional data model for OLAP.  The 
main contributions are: (a) the introduction of a formal multidimensional data model; 
(b) the very elegant manners of definitions of three cube operators, namely jumping, 
rollingUp and drillingDown; (c) the modeling of the conceptual multidimensional 
data model in term of classes by using UML. 

3. A Conceptual Data Model 

In our approach, a multidimensional data model is constructed based on a set of 
dimensions { } N∈= xx ,D,..,D1D , a set of measures { } N∈= yy ,M,..,M1M  and a 

set of data cubes { } N∈= zz ,C,..,C1C . The following sections formally introduce the 
descriptions of dimensions with their structures, measures and data cubes.  

3.1. The Concepts of Dimensions 

First, we introduce hierarchical relationships among dimension members by means of 
one hierarchical domain per dimension. A hierarchical domain is a set of dimension 
members, organized in hierarchy of levels, corresponding to different levels of 
granularity. It allows us to consider a dimension schema as a partially ordered set of 
levels. In this concept, a hierarchy is a path along the dimension schema, beginning at 
the root level and ending at a leaf level. Moreover, the recursive definitions of two 
dimension operators, namely ancestor and descendant, provide abilities to navigate 
along a dimension structure. In a consequence, dimensions with any complexity in 
their structures can be captured with this data model. 

Definition 3.1.1. [Dimension Hierarchical Domain] A hierarchical domain of a 
dimension D is a non-empty set and denoted by { }ndmdmalldom ,..,}{)D( 1∪= , 
where: 
• Each dimension member idm is a data item within a dimension. E.g. 1999, 

Q1.1999, Jan.1999, and 1.Jan.1999, etc are dimension members within the 
dimension Time (Fig. 1). 
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=+ )( idm }:)D({ kMik dmdmdomdm �∈  
• The all or root member: ):)D())(D(!( alldmdomdmdomall M�∈¬∃∈∃ .  
• Leaf members: ):),D())(D(( jMiji dmdmjidomdmdomdm �≠∈¬∃∈∀ . 
Example: Figure 1 shows a representation in tree term of the dimension Time. 
Hereafter, we have: 

dom(Time)={all,1999,Q1.1999,..,3.Mar.1999}, 
all M� 1999,1999 M� Q1.1999,...,Mar.1999 M� 3.Mar.1999, 
-(1999)=all;  +(1999)={Q1.1999,W1.1999,W5.1999,W9.1999} 

Definition 3.1.2. [Dimension Levels] Let { } N∈∪= hllAllLevels h ,,..,)D( 1  be a finite 
set of levels of a dimension D, where:  
• The collection of subsets { })(),..,( 1 hldomldom  is a partition of dom(D), 
• The All or root level: }{)(:)D(! allAlldomLevelsAll =∈∃ , 

• Leaf levels: } a :)()D({ leafmemberdmldomdmLevelsl jiji ∈∀∈ . 

Example: The dimension Time has three levels Levels(Time)={All,Year,Quarter, 
Month,Week,Day}. And:  

dom(All)= {all}, dom(Year)={1999}, dom(Quarter)= {Q1.1999} 
dom(Month)= {Jan.1999,Feb.1999,Mar.1999},  
dom(Week)={W1.1999,W5.1999,W9.1999}, 
dom(Day)= {1.Jan.1999,6.Jan.1999,1.Feb.1999,3.Feb.1999,3.Mar.1999} 

Definition 3.1.3. [Dimension Schema] A schema of a dimension D, denoted by 
DSchema(D)= L,Levels �)D( , is a partially ordered set of levels: 
• Levels(D) is a finite set of dimension levels, 
• And L�  is an ordered relation over the levels and satisfies the following 

condition: 
jLi ll �  if :))((  ))(( juit ldomdmandldomdm ∈∃∈∃ uMt dmdm � . 
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Fig. 3. Schemas of three dimensions Product, Geography and Time 

Example: Figure 3 is used to describe schemas of three dimensions Product, 
Geography, and Time.  
DSchema(Product)={All L� Category, Category L� Type, Type L� Item} 



DSchema(Geography)={All L� Country, Country L� State, State L� City} 
DSchema(Time)={All L� Year ,Year L� Quarter, Quarter L� Month, Month L� Day ,  
            All L� Year, Year L� Week, Week L� Day} 
Definition 3.1.4. [Dimension Path] A path within a dimension schema is a linear, 
totally ordered list of levels and can be defined as follows:  
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Else  

Definition 3.1.5. [Dimension Hierarchy] A hierarchy is defined by a ),( leaflAllpath  
within the schema of a dimension D. The path begins at All (root) level and ends at a 
leaf level. 

Let N∈= mhhH m},,..,{)D( 1  be a set of hierarchies of a dimension D. If m=1 then 
the dimension has single hierarchical structure, else the dimension has 
multihierarchical structure.  

Definition 3.1.6. [Dimension Operators] Two dimension operators (DO), namely 
ancestor and descendant, are defined recursively as follows: 
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If  )),(( φ=di llpath  

Else If  )( dLi ll �  

Else 

Example: ancestor(Q1.1999,Year,Time)=1999, 
descendant(Q1.1999,Month,Time)= {Jan.1999,Feb.1999,Mar.1999}, 

3.2. The Concepts of Measures 

In this section we introduce measures, which are the objects of analysis in the context 
of multidimensional data model.  



Definition 3.2.1. [Measure Schema] A schema of a measure M is a tuple 
O,)M( FnameMSchema = , where: 

• Fname is a name of a corresponding fact, 
• COMPOSITE}{NONE,O ∪Ω∈ is an operation type applied to a specific fact [2]:  

− Ω={SUM, COUNT, MAX, MIN} is a set of aggregation functions, 
− COMPOSITE is an operation (e.g. average), where measures cannot be 

utilized in order to automatically derive higher aggregations, 
− NONE measures are not aggregated. In this case, the measure is the fact. 

Definition 3.2.2. [Measure Domain] Let N be a numerical domain where a measure 
value is defined (e.g. N, Z, R). The domain of a measure M is a subset of N. We 
denote by N⊂)M(dom . 

3.3. The Concepts of Data Cubes 

A multidimensional cube is constructed based on a set dimensions and a set of 
measures, and consists a collection of cells. Each cell is an intersection among a set of 
dimension members and measure data values. Furthermore, cells are grouped into 
granular groupbys, each of which expresses a mapping from the domains of x-tuple of 
dimension levels (independent variables) to y-numerical domains of y-tuple of 
numeric measures (dependent variables). 
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Fig. 4. Sale cube includes dimensions: Geography, Product and Time and a fact: Sale amount. 

Given x dimensions N∈xx ,D,..,D1 , and y measures N∈yy ,M,..,M1 . 

Definition 3.3.1. [Cube Schema] A cube schema is tuple 
CSchema(C)= MSchemasDSchemasCname ,, : 
• Cname is the name of a cube,  
• DSchemas are the schemas of x dimensions, denoted by 

,)D(),..,D( 1 >=< xDSchemaDSchemaDSchemas  
• MSchemas are the schemas of y measures, denoted by 

>=< )M(),..,M( 1 yMSchemaMSchemaMSchemas . 



Definition 3.3.2. [Cube Domain] Given a function: 
},{)M(..)M()D(..)D(: 11 falsetruedomdomdomdomf yx →××××× , 

A cube domain, denoted by { } N∈= kccdom k ,,..,)C( 1  is determined as follows:  
)C(dom = ),D(..)D(),({ 1 xdomdomdmsfmsdmsc ××∈=  

}),(:)M(..)M( 1 truefmsdmsfdomdomfms y =××∈  

3.4. Operating Group by, Rolling Up, Drilling Down in our model 

Let a cube C be constituted from x dimensions N∈xx ,D,..,D1 , and y measures 
N∈yy ,M,..,M1 . We define groupby and three operators, namely jumping, 

rollingUp and drillingDown as follows: 

Definition 3.4.1. [Groupby] A groupby is triple G= )G(),G(, domGSchemaGname  
where: 
• Gname is the name of this groupby, 
• GSchema(G)= )G(),G( GMSchemasGLevels : 

)D(..)D(,..,)G( 1DD1 xLevelsLevelsllGLevels
x

××>∈=<  is a x-tuple of levels of 

the x dimensions N∈xx ,D,..,D1 .  
>=< )M(),..,M()G( 1 yMSchemaMSchemaGMSchemas  is a y-tuple of measure 

schemas of the y measures N∈yy ,M,..,M1 .  

• ),(..)(|)C(,{)G( DD1 x
ldomldomdmsdomfmsdmscdom ××∈>∈=<=  

)}M(..)M( 1 ydomdomfms ××∈  

Let hi be a number of levels of each dimension Di (1≤i≤x). The total set of 

groupbys over a cube C is defined as ∏
=

==
x

i
ip hpGroupbys

1
1 },G,..,G{)C( [18]. 

Definition 3.4.2. [Cube Operators] The three basic navigational cube operators (CO), 
namely jumping, rollingUp and drillingDown, which are applied to navigate along a 
data cube C, corresponding to a dimension Di, are defined as follows: 

Given a current groupby cG , associated with a level cl  of a dimension iD , and 
three other levels )D(,, idrj Levelslll ∈ . 

• Jumping: 
>=<= )G(),G(G)D,,G( jjjijc GMSchemasGLevelsljumping

 Where:  
),G()G( cj GMSchemasGMSchemas =  

,))(G( jj liGLevels = .),)(G())(G( ikkGLevelskGLevels cj ≠∀=  

• Rolling Up: )( cldomdm ∈∀ , )D,,G(G ircr ljumping= : 



>=<= )G(),G(G)D,,,G( sub
r

sub
r

sub
rirc domGSchemaldmrollingUp

 Where:  
)G()(G r

sub
r GSchemaGSchema = , 

:)G(|)G({)G( crr
sub
r domcdomcdom ∈∃∈= ,)(. dmidmsc =  

)D,,()(. irr ldmancestoridmsc = , }),(.)(. ijjdmscjdmscr ≠∀=  
• Drilling Down: )( cldomdm ∈∀ , )D,,G(G idcd ljumping= : 

>=<= )G(),G(G)D,,,G( sub
d

sub
d

sub
didc domGSchemaldmwndrillingDo

 Where:  
),G()(G d

sub
d GSchemaGSchema =  

:)G(|)G({)G( cdd
sub
d domcdomcdom ∈∃∈= ,)(. dmidmsc =  

),D,,()(. idd ldmdescendantidmsc ∈ }),(.)(. ijjdmscjdmscd ≠∀=  

4. Modeling Multidimensional Data Model 

In this section, UML is used to model dimensions, measures and data cubes in context 
of an object oriented data model. All conceptual components, which are introduced in 
section 3, are mapped as classes. Figure 5 illustrates the modeling for our data model 
in term of class diagrams by using UML.  

4.1. The Modeling of Dimensions 

The dimension concepts, such as: dimension members, levels, dimension schemas, 
hierarchy and dimension, are modeled in term of class diagrams by using UML. First, 
a hierarchical domain of dimension members within a dimension is handled by means 
of the DMember class. The two dimension member operators {+} and {-} are mapped 
into the two methods getFathers and getChildren, built-in every instance of this class. 
Hereafter, The Level, DSchema, Hierarchy classes are defined to describe the 
concepts of level, dimension schema and dimension hierarchy. Afterwards, each 
instance of the Dimension class describes a dimension. The dimension operators, 
namely ancestor and descendant are mapped as two methods with the same names. 

4.1.1. DMember. Each instance of this class describes a dimension member within a 
hierarchical domain of a dimension.  
• Attributes: 

description (String) - That is a data item within a dimension.  
• Relationships: 

fathers (Set<DMember>) - A set of referred DMember objects.  
children (Set<DMember>) - A set of referred DMember objects 

• Main methods:  
getFathers() (return Set<DMember>) - This method describes the operator {-}.  
getChildren() (returns Set<DMember>) - This method describes the operator {+}.  



IntergerV alue
value : int;

s etValue(new V : int) : void;
getValue() : int;

floa tValue
value : float;

s etValue(newV : float) : void;
getValue() : float;

MeasureValue
value : type;

s etValue(newV : Type) : void;
getValue() : Type;

Hierarchy
Hnam e : String;

Hierarchy() : void;
s etHnam e(hnam e : String) : void;
ins ertLevel(pos ition : int, l : Level) : boolean;
rem oveLevel(lnam e : String) : boolean;
getLevel(lnam e : String) : Level;
getPreLevel(lnam e : String) : Level;
getAfterLevel(lnam e : String) : Level;
getLevels () : s et of Level;

DMember
Des cription : String;

s etDes cription(des cM : String) : void;
getDes cription() : s tring;
addChild(aCM : D Mem ber) : boolean;
rem oveChild(rCM : DMem ber) : boolean;
getChildren() : s et of DMem ber;
addFather(aFM : DMem ber) : boolean;
rem oveFather(rFM : D Mem ber) : boolean;
getFathers () : s et of D Mem ber;

0.. *+Child 0.. *

Has Child

+Father

0..*

+Father

0..*

Has Father +Child

Dimension

s etDSchem a(new D S : DSchem a) : void ;
getDSchem a() : DSc hema ;
addHierarchy(new H : Hierarchy) :  boolean;
rem oveHierarchy(hname  : String)  :  boolean;
getHierarc hy(hname  : St ring)  : H ier arc hy;
getHierarc hies () : s e t of Hierar chy;
addLevel( l : L evel) : bool ean;
rem oveLevel(l nam e : Str ing) : bool ean;
getLevel (l nam e : Str ing) : Level;
getLevel s () : s et o f Level ;
ances tor(cD M : DMemb er, l nam e : Str ing) : DMem ber;
des ce ndant(cDM : DMem be r, lnam e :  Strin g) : s et o f DMe m ber ;

1..*1..*

contains

MS chem a
Fnam e : String;
AggFunction : String;

Cell

addDMem ber(newDM : DMem ber) : boolean;
rem oveD Mem ber(index : int) : boolean;
getDMem ber(index : int) : DMem ber;
getDMem bers () : s et of D Mem ber;
addMValue(newMV : Meas ureValue) : boolean;
rem oveMValue(index : int) : boolean;
getMValue(index : int) : Meas ureValue;
getMValues () : s et of Meas ureValue;

1..*1..*
refers  to

1..*1..*
contains

Cube
Bas icGr oupby :  Gr oupby;

s e tC Schem a( new CS : C ub eSchem a) : void;
ge tC Schem a( ) : C ubeSch ema;
ad dGroupby(ne wG : Gro upby)  : boolean;
r em oveGro upby( gnam e : Str in g) : boolean;
ge tGroupby(gnam e : Strin g) : Grou pby;
ge tGroupbyNam es ( ) : s et o f Strin g;
ad dDim ens ion(n ewD : Dimen s ion) : boolean;
r em oveDim(dnam e : Str ing ) : boolean;
ge tD im( dnam e : Str ing ) : D im ens ion;
ge tD imens ions ()  :  s e t of Dimens ion;
jum pin g(l nam e : Str ing, dnam e : Str ing ) : void;
r ol li ngUp(c D M :  DMem ber, lna me : Stri ng, dna me : St ring)  : voi d;
dri ll in gDo wn (cDM : D Membe r,  lnam e : Str in g, dnam e : Strin g) : vo id;

1..*1..*

refers  to

Level
Lnam e : Str ing;

s etLnam e(lnam e : Strin g) : void;
getLnam e() : String;
addD M(m  : DMem ber) : b oolean;
rem oveDM( m  : DMem ber) : boolean;
getDM(des cM : String) : D Mem ber;
getDMs () : s et of DMem ber;

1.. *1.. *

refers  to

1 .. *1 .. *

contains

1..*1..*

c onta ins

MSchemas

addMSchem a(m s : MSche m a) : boolean;
rem oveMSc hem a(m s  :  MSchem a) : bool ean;
rem oveMSc hem a(index : int) : boolean;
getMSchem a(index : i nt) : MSchem a;

1.. *1.. *

contains

Groupby

s etGSchem a(gs chem a : GSchem a) : void;
getGSchem a() : GSchem a;
addC ell(c : Cell) : boolean;
rem oveCell(c : Cell) : boolean;
getCell(D nam e : String, dm  : D Mem ber) : cell;

1..*1..*

c ontains

1..*1..*

refers  to

GSc hema
Gnam e : Stri ng;

ge tGnam e() : Stri ng;
s e tGnam e(n ew Gn ame :  St ring)  : voi d;
up date MSc hema s (newMSs  : MSchem as )  : boole an;
ad dLevels (aLevel : Level)
rem oveLevel(i ndex i nt)  : Level;

1..*1..*

refers  to

refers  to

contains

CSchema
C name  : St ri ng;

getCn ame( ) : Stri ng;
s etCn ame( newName  :  St ring)  : voi d;
updateMSchem as (newMS : MSche m as )  : void;
updateDSchem as (newDM : DSchem as)  :  void;

c onta ins

c onta ins

DSchema
Dnam e : String;

addLevel(addlevel : Level) : boolean;
rem oveLevel(lnam e : String) : boolean;
getLevel(lnam e : String) : Level;

contains

1..*1..* refers  to

1..*

contains

1..*

Fig.5. The modeling of the object oriented multidimensional data model 



4.1.2. Level. Each instance of the Level class describes a level of a dimension. 
Attributes: 

dmembers (Set<DMember>) - A set of contained DMember objects. 

4.1.3. DSchema. Each instance of the DSchema describes a dimension schema.  
• Attributes: 

dname (String) - That is a dimension name.  
• Relationships: 

levels (Set<Level>) - A set of Level objects. 

4.1.4. Hierarchy. Each instance of the Hierarchy class describes a hierarchy of levels 
within a dimension.  
• Attributes: 

dname (String) - That is a hierarchy name 
• Relationships: 

levels (Set<Level>) - A set of Level objects 

4.1.5. Dimension. Each instance of this class describes a dimension.  
• Attributes: 

dschema (DSchema) - A DSchema object.  
hierarchies (Set<Hierarchy>) - A set of Hierarchy objects. 
levels (Set<Level>) -  A set of Level objects.  

• Main methods: 
ancestor(DMember cDM;lname:String) (returns DMember): ancestor operator.  
descendant(DMember cDM,lname:String) (Set<DMember>): descendant operator. 

4.2. The Modeling of Measures 

Measure schemas and measure data values are mapped into classes. First, an 
MSchema describes a measure schema. Afterwards, The MValue is an abstract type 
that serves as a common super type for measure values. It is obvious that the two 
classes, namely intMValue and floatValue, are subclasses of MValue. 

4.2.1. MSchema. Each instance of this class describes a measure schema.  
• Attributes: 

fname (String) - That is a fact name.  
aggFunction (String)- An aggregation function, such as Max, Min, Sum, Count, 

None and Composite. 

4.2.2. MValue. MValue is an abstract type that serves as common super type for 
measure values.  
Attributes: 

value (Type) – That describes a measure value. 

4.2.3. intMValue. The intMValue is a subclass of MValue. Each instance of this class 
describes an integer measure value. 
• Specializes: 

MValue: The intMValue class inherits from MValue class 



• Attributes: 
value  (int) – The value is overridden as integer. 

4.2.4. floatMValue. The floatMValue is a subclass of MValue. Each instance of this 
class describes a float measure value. 
• Specializes: 

MValue: The floatMValue class inherits from MValue class 
• Attributes: 

value (float) – The value is overridden as float. 

4.3. The Modeling of Multidimensional Components 

First, each instance of the CSchema, which contains an x-tuple of DSchemas and a y-
tuple of MSchemas, describes a cube schema. Then, a Cell refers to x DMembers of x 
dimensions and y MValues of y measures. In addition, a GSchema contains x Levels of 
x dimensions and the y-tuple MSchemas. Afterwards, a Groupby contains a GSchema 
and a subset of Cells. As a consequence, a Cube contains a CSchema and a 
BasicGroupby (Groupby), is associated with a set of Dimensions, and a set of 
Groupbys. The three methods, i.e. jumping, rollingUp and drillingDown, are the 
mappings of the three operators with the same names. 

4.3.1. CSchema. Each instance of the CSchema describes a cube schema.  
• Attributes: 

dschemas (Set<DSchema>) - A set of x DSchema objects,  
mschemas (Set<MSchema>) - A set of y MSchema objects. 

4.3.2. Cell. Each instance of this class describes a cube cell.  
• Relationships: 

dmembers (Set<DMember>) - A set of x DMember objects. 
mvalues (Set<MValue>) - A set of y MValue objects. 

4.3.3. GSchema. Each instance of the GSchema class describes a groupby schema.  
• Relationships: 

levels (Set<Level>) - A set of x Level objects. 
mschemas (Set<MSchema>) - A set of y MSchema objects. 

4.3.4. Groupby. Each instance of this class describes a groupby.  
• Attributes: 

gschema (GSchema): A GSchema object that describes a groupby schema. 
cells (Set<Cell>): A set of Cell objects.  

4.3.5. Cube. Each instance of the Cube class describes a data cube.  
• Attributes: 

cschema (CSchema) – A CSchema describes a cube schema of a cube. 
basicgroupby (Groupby) - A Groupby object. 

• Relationships: 
dimensions (Set<Dimension>) - Dimensions express for x dimensions of a cube. 
groupbies (Set<Groupby>) – A set of Groupby objects,  



• Main methods: 
jumping(lname:String;dname:String) (void) -  jumping operator.  
rollingUp(cDM:DMember;lname:String;dname:String) (void) - rollingUp operator. 
drillingDown(cDM:DMember;lname:String;dname:String) (void) - drillingDown 

operator. 

5. Conclusion and future works 

In this paper, we have introduced the conceptual multidimensional data model, which 
facilitates even sophisticated constructs based on multidimensional data units or 
members such as dimension members, measure data values and then cells. The model 
is able to represent and capture natural hierarchical relationships among dimension 
members. Dimensions with complexity of their structures, such as: unbalanced and 
multihierarchical structures, can be modeled in an elegant and consistent way. 
Moreover, the data model represents the relationships between dimension members 
and measure data values by mean of cube cells. In consequence, data cubes, which are 
basic components in multidimensional data analysis, and their operators are formally 
introduced in a very elegant manner. We have also proposed a modeling of the 
conceptual multidimensional data model in term of classes by means of UML, which 
is an object oriented standard analysis and design notation.  

In context of future works, we are investigating two approaches for 
implementation: pure object-oriented orientation and object-relational approach. With 
the first model, dimensions and cube are mapped into an object-oriented database in 
term of classes. In the other alternative, dimensions, measure schema, and cube 
schema are grouped into a term of metadata, which will be mapped into object-
oriented database in term of classes. Some useful methods built in those classes are 
used to give the required Ids within those dimensions. The given Ids will be joined to 
the fact table, which is implemented in relational database. 
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